summaryrefslogtreecommitdiff
path: root/advtrains_interlocking/database.lua
blob: 61bf5ad3220b1ed70bd023c43504d41a97ed5952 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
-- interlocking/database.lua
-- saving the location of TCB's, their neighbors and their state
--[[
The interlocking system is based on track circuits.
Track circuit breaks must be manually set by the user. Signals must be assigned to track circuit breaks and to a direction(connid).
To simplify the whole system, there is no overlap.
== Trains ==
Trains always occupy certain track circuits. These are shown red in the signalbox view (TRAIN occupation entry).
== Database storage ==
The things that are actually saved are the Track Circuit Breaks. Each TCB holds a list of the TCBs that are adjacent in each direction.
TC occupation/state is then saved inside each (TCB,Direction) and held in sync across all TCBs adjacent to this one. If something should not be in sync,
all entries are merged to perform the most restrictive setup.
== Traverser function ==
To determine and update the list of neighboring TCBs, we need a traverser function.
It will start at one TCB in a specified direction (connid) and use get_adjacent_rail to crawl along the track. When encountering a turnout or a crossing,
it needs to branch(call itself recursively) to find all required TCBs. Those found TCBs are then saved in a list as tuples (TCB,Dir)
In the last step, they exchange their neighbors.
== TC states ==
A track circuit does not have a state as such, but has more or less a list of "reservations"
type can be one of these:
TRAIN See Trains obove
ROUTE Route set from a signal, but no train has yet passed that signal.
Not implemented (see note by reversible): OWNED - former ROUTE segments that a train has begun passing (train_id assigned)
		  - Space behind a train up to the next signal, when a TC is set as REVERSIBLE
Certain TCs can be marked as "allow call-on".
== Route setting: ==
Routes are set from a signal (the entry signal) to another signal facing the same direction (the exit signal)
Remember that signals are assigned to a TCB and a connid.
Whenever this is done, the following track circuits are set "reserved" by the train by saving the entry signal's ID:
- all TCs on the direct way of the route - set as ROUTE
Route setting fails whenever any TC that we want to set ROUTE to is already set ROUTE or TRAIN from another signal (except call-on, see below)
Apart from this, we need to set turnouts
- Turnouts on the track are set held as ROUTE
- Turnouts that purpose as flank protection are set held as FLANK (NOTE: left as an idea for later, because it's not clear how to do this properly without an engineer)
== Call-On/Multiple Trains ==
It will be necessary to join and split trains using call-on routes. A call-on route may be set when:
- there are no ROUTE reservations
- there are TRAIN reservations only inside TCs that have "allow call-on" set
== TC Properties ==
Note: Reversible property will not be implemented, assuming everything as non-rev.
This is sufficient to cover all use cases, and is done this way in reality.
	REVERSIBLE - Whether trains are allowed to reverse while on track circuit
	This property is supposed to be set for station tracks, where there is a signal at each end, and for sidings.
	It should in no case be set for TCs covering turnouts, or for main running lines.
	When a TC is not set as reversible, the OWNED status is cleared from the TC right after the train left it,
	to allow other trains to pass it.
	If it is set reversible, interlocking will keep the OWNED state behind the train up to the next signal, clearing it
	as soon as the train passes another signal or enters a non-reversible section.
CALL_ON_ALLOWED - Whether this TC being blocked (TRAIN or ROUTE) does not prevent shunt routes being set through this TC
== More notes ==
- It may not be possible to switch turnouts when their TC has any state entry

]]--