summaryrefslogtreecommitdiff
path: root/statistics.lua
blob: c8defa2fa85580c652ee8040eeb8a0d37c40fc8d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
local statistics = {}
local ROOT_2 = math.sqrt(2.0)

-- Approximations for erf(x) and erfInv(x) from
-- https://en.wikipedia.org/wiki/Error_function

local erf
local erf_inv

local A = 8 * (math.pi - 3.0)/(3.0 * math.pi * (4.0 - math.pi))
local B = 4.0 / math.pi
local C = 2.0/(math.pi * A)
local D = 1.0 / A

erf = function(x)

	if x == 0 then return 0; end

	local xSq  = x * x
	local aXSq = A * xSq
	local v = math.sqrt(1.0 - math.exp(-xSq * (B + aXSq) / (1.0 + aXSq)))

	return (x > 0 and v) or -v
end

erf_inv = function(x)

	if x == 0 then return 0; end

	if x <= -1 or x >= 1 then return nil; end

	local y = math.log(1 - x * x)
	local u = C + 0.5 * y
	local v = math.sqrt(math.sqrt(u * u - D * y) - u)

	return (x > 0 and v) or -v
end

local function std_normal(u)
	return ROOT_2 * erf_inv(2.0 * u - 1.0)
end

local poisson
local cdf_table = {}

local function generate_cdf(lambda_index, lambda)

	local max = math.ceil(4 * lambda)
	local pdf = math.exp(-lambda)
	local cdf = pdf
	local t = { [0] = pdf }

	for i = 1, max - 1 do
		pdf = pdf * lambda / i
		cdf = cdf + pdf
		t[i] = cdf
	end

	return t
end

for li = 1, 100 do
	cdf_table[li] = generate_cdf(li, 0.25 * li)
end

poisson = function(lambda, max)

	if max < 2 then
		return (math.random() < math.exp(-lambda) and 0) or 1
	elseif lambda >= 2 * max then
		return max
	end

	local u = math.random()
	local lambda_index = math.floor(4 * lambda + 0.5)
	local cdfs = cdf_table[lambda_index]

	if cdfs then

		lambda = 0.25 * lambda_index

		if u < cdfs[0] then return 0; end
		if max > #cdfs then max = #cdfs + 1 else max = math.floor(max); end
		if u >= cdfs[max - 1] then return max; end

		if max > 4 then  -- Binary search

			local s = 0

			while s + 1 < max do

				local m = math.floor(0.5 * (s + max))

				if u < cdfs[m] then max = m; else s = m; end
			end
		else
			for i = 1, max - 1 do
				if u < cdfs[i] then return i; end
			end
		end

		return max
	else
		local x = lambda + math.sqrt(lambda) * std_normal(u)

		return (x < 0.5 and 0) or (x >= max - 0.5 and max) or math.floor(x + 0.5)
	end
end

-- Error function.
statistics.erf = erf

-- Inverse error function.
statistics.erf_inv = erf_inv

--- Standard normal distribution function (mean 0, standard deviation 1).
 --
 -- @return
 --    Any real number (actually between -3.0 and 3.0).

statistics.std_normal = function()

	local u = math.random()

	if u < 0.001 then
		return -3.0
	elseif u > 0.999 then
		return 3.0
	end

	return std_normal(u)
end

--- Standard normal distribution function (mean 0, standard deviation 1).
 --
 -- @param mu
 --    The distribution mean.
 -- @param sigma
 --    The distribution standard deviation.
 -- @return
 --    Any real number (actually between -3*sigma and 3*sigma).

statistics.normal = function(mu, sigma)

	local u = math.random()

	if u < 0.001 then
		return mu - 3.0 * sigma
	elseif u > 0.999 then
		return mu + 3.0 * sigma
	end

	return mu + sigma * std_normal(u)
end

--- Poisson distribution function.
 --
 -- @param lambda
 --    The distribution mean and variance.
 -- @param max
 --    The distribution maximum.
 -- @return
 --    An integer between 0 and max (both inclusive).

statistics.poisson = function(lambda, max)

	lambda, max = tonumber(lambda), tonumber(max)

	if not lambda or not max or lambda <= 0 or max < 1 then return 0; end

	return poisson(lambda, max)
end

return statistics